- 2. Answer: 15 miles per hour. This one can be done using a time number line by breaking up the two hour trip into thirds.
- 3. Answer: 10 mph.

I used the guess-check-generalize method on this one as follows:

Step 1: Guess: 20 mph

First part of trip: 10 miles @ 20 mph gives a time of $\frac{10}{20} = \frac{1}{2}$ hr

Second part of trip: 24 miles @ 34 mph gives a time of $\frac{24}{34} = \frac{12}{17}$ hr

Step 2: Check

The time on the first part of trip must equal time on second pat of trip but

$$\frac{1}{2}hr \neq \frac{12}{17}hr$$

Step 3: Generalize: Let *x* be the original speed.

Then:

First part of trip: 10 miles @ x mph gives a time of $\frac{10}{x}$ hours

Second part of trip: 24 miles@ (x+14) mph gives a time of $\frac{24}{x+14}$ hours

The fact that the time on the first part of the trip must equal the time on the second part of the trip yield the equation:

$$\frac{10}{x} = \frac{24}{x+14}$$

4. 48 mph

5. Answer: 20 mph

I used a table on this one:

	Distance	Rate	Time
Bill	50	x - 10	50
(Moped)			$\overline{x-10}$
Ted	60	X	60
(Vespa)			x

Use the fact that "Ted travels 60 miles in two hours less time than it takes Bill to travel 50 miles" to set up an equation.

6.
$$x = -1/2$$